ServoWorks™ CNC:
Ultimate PC-Based,
Truly Open-Architecture
Soft CNC Solutions

Powerful
PC-Based
Affordable
Scalable
Soft Servo’s ServoWorks™ CNC Product Line

Soft Servo Systems offers the following CNC products based on ServoWorks™ soft CNC technology:

- ServoWorks S-100M, S-120M, and S-140M for mills and machining centers
- ServoWorks S-100T for lathes

LadderWorks PLC, for integrating soft PLC with CNC, is bundled with all our ServoWorks CNC products. ServoWorks MotionLite, a free utility for servo configuration, tuning and testing is included with ServoWorks S-100M, S-120M, and S-140M. (ServoWorks S-100T has its own servo configuration, tuning and testing functions.)

Soft Servo Systems also offers extensive software development tools for developing customized ServoWorks solutions.

ServoWorks™: Unique Soft CNC Technology

All of Soft Servo Systems’ CNC products are based on ServoWorks, our unique and proprietary PC-based motion control software technology. ServoWorks uses a single host CPU to perform all real-time servo and CNC tasks, including feedback loops, accelerations/decelerations, multi-axis coordination, G code processing, NC path generation and PLC, as well as providing the graphical user interface, program interpreting/loading, file management, data processing and network communications, all simultaneously.

ServoWorks CNC controllers run on top of the core ServoWorks software on Windows XP or Windows 7, with a real-time kernel.

Several servo communications platforms are available for off-the-shelf ServoWorks CNC products: VersioBus™ II, EtherCAT, Panasonic Realtime Express™ (RTEX), CANopen, MECHATROLINK™ II, and MECHATROLINK™ III.
Advantages of ServoWorks CNC Technology:

Powerful and High Performing
Unique soft CNC motion and soft CNC technology fully exploits the powerful and relatively inexpensive CPUs in personal computers to provide superior, incomparable CNC performance, allowing customers to increase productivity and reliability.

ServoWorks makes full use of the super-fast, super-precise (double-precision floating point) computation power of ordinary PCs, computation power which, until recently, was available only with a supercomputer. The ServoWorks CNC Engine provides customers with superior axis motion control performance. Our technologically advanced, multi-axis servo loops deliver ultra fast and accurate motion control. These servo loops are entirely closed in the CPU, and are optimized with velocity feedforward, backlash compensation, leadscrew pitch error compensation, linear scale feedback compensation, corner deceleration control, smoothing, interpolation and more.

Soft motion and soft PLC are integrated into a single motion/machine control application which gives customers incomparable motion and machine control.

ServoWorks CNC products support many modes of motion and are filled with functions and features, so that you will be able to produce high-quality parts quickly, easily and reliably.

Affordable and Innovative
PC-based technology enables users to take advantage of the ever-improving CPUs in personal computers to improve the performance of their systems.

ServoWorks products easily handle computation-heavy algorithms without additional expensive processors. All high-performance, multi-axis servo loops are entirely closed in software, eliminating the need for expensive plug-in motion control boards.

A unique and open architecture significantly reduces complex interface wiring and hardware requirements, and eliminates the need for high-priced proprietary encoder- or servo-specific interface modules, breakout boxes, complex interface wiring, and analog and encoder cables from the PC. The EtherCAT interface system is a zero hardware system. The Panasonic Realtime Express, MECHATROLINK, CANopen and Mitsubishi SSCNET interface systems use only PC adapter boards; the VersioBus II interface system uses minimal hardware.

Setup, integration and maintenance are simple and fast, further reducing cost and time to market. Simple cabling and connections for all communications platforms minimize maintenance and total cost of ownership.

Customizable
It's easy to customize a ServoWorks CNC system to meet your exact motion control needs.

Because our soft motion technology is based on open architecture, customers can design and program motion applications with a comprehensive software development kit, making it easy to design and program customized ServoWorks CNC applications, taking full advantage of ServoWorks soft motion technology. Or you can purchase one of our many user-friendly CNC products.

ServoWorks CNC solutions are Windows-based (with a real-time extension), allowing customers to take advantage of sophisticated user interfaces, connectivity to enterprise networks, off-the-shelf PC technology, and integration with third-party Windows-based software, such as vision systems or statistical process control software.

Scalable and Flexible
ServoWorks products are designed to provide customers with exactly the number of axes to be controlled and the I/O capabilities required.

A handwheel can be included or excluded from your system. Soft Servo Systems offers an easy-to-operate handwheel, or customers can provide their own.

Mouse, keyboard and/or touch screen are all optional parts of a ServoWorks CNC system. Our soft motion technology can be paired with one of six different interface platforms for servo drives and I/O communications, depending upon needs, to provide a solution that is right for you.
Servo Features
- Complete dual-axis synchronous control (except ServoWorks S-100M and S-100T)
- PID control
- Velocity feedforward
- Servo alarms
- Protective features
- Actual velocity measurement

Macro Features
- 99 local variables
- 400 numbered global variables (their values are lost when the control restarts)
- An unlimited number of symbolic global variables, with meaningful variable naming (such as “#position”)
- 500 numbered permanent variables (their values remain when the control restarts)
- Up to 24,000 system variables (depending upon the number of axes, tool offsets, workpiece coordinate offsets, etc.)
- Extensive math operations:
 - Addition, subtraction, multiplication, division (+, −, *, /)
 - Sin, cos, tan, asin, acos, atan
 - Exponent, square root, absolute value
 - Rounding off, rounding down, rounding up
 - Natural logarithm, exponential function
 - OR, XOR, AND, NOT
 - Unlimited nesting of parenthesis
- Branching and repetition statements supported:
 - GOTO, IF GOTO, IF THEN, IF ELSE ENDIF, WHILE
- Unlimited nesting of branching and repetition statements
- Macro calls using custom G, M, S and T codes

Part Program Storage and Editing
- Windows standard file management
- Storage of part programs is only limited by the size of your PC’s internal hard disk
- Unlimited file size text editor
- Read from and write to your PC’s compact flash memory drive or PCMCIA card—whatever your PC includes for storage
- Save and load programs over a LAN through the Ethernet

Supported Operational Features
- High-speed block processing of up to 1000 blocks / sec
- Single block
- Optional block skip
- Dry run
- PLC axes (ServoWorks S-120M, and S-140M)
- Modes of motion include jogging, manual jogging with an optional handwheel, and rapid positioning
- Individual axis machine lock
- Individual axis and individual direction (forward and reverse) interlock (ServoWorks S-100T)
- Handwheel feed interruption
- Manual intervention and return with manual absolute function
- Cycle start, cycle stop/feed hold
- Program stop (M00)
- Optional stop (M01)
- Program rewind (M30)
- Subprogram call from a main program (M98)
- End of subprogram and return to main program (M99)
- Emergency stop
- Overtravel limits (hardware limit switches and software stroke limits)
- Machine, workpiece, local and relative coordinates
- Standard STMB functions
- Three homing types

Display Features
- Simple, user-friendly colorful GUI — will seem familiar because it is Windows-based
- Full-screen single window with static display areas, permanently anchored toolbars and easy-to-use soft buttons for giving commands and accessing information
- Displays position data, plot, I/O status, servo status, NC status and motion monitoring
- Real-time program execution, position display and plotting
- Real-time I/O, servo, NC status and motion monitoring
- Data display is configurable on-the-fly, in terms of what position types are displayed

User-Friendly Operation
- All of our controllers were designed with both the machine operator and the machine integrator in mind, to be up and running quickly
- Soft Servo’s products have been thoroughly tested by end users. Their feedback has been incorporated throughout the design process and continues to be an invaluable resource as we constantly improve our software.
Feed Features
- Maximum positioning speed: 300 M/min
- High speed cutting function (maximum cutting feedrate: 60 M/min
- Dwell
- Manual feed with an optional pulse generator: x1, x10, x100, x1000 (except ServoWorks S-100T, which has x1, x10 and x100)
- Rapid traverse override (0 – 100%)
- Manual feedrate override (ServoWorks S-100T: 0 – 230%, all other ServoWorks CNC products: 0 – 254%)
- Per minute feed and per revolution feed (ServoWorks S-100T, S-100M, S-120M, and S-140M)

Axis Motion Control Performance
- Up to 16 axes of coordinated motion control — number of axes depends on the ServoWorks CNC product. Scalable in 4-axis increments. (VersioBus II interface system: 16-axis coordinated motion at 1 ms position feedback rate.)
- Linear interpolation
- Circular interpolation
- Helical interpolation (except ServoWorks S-100T)
- Exponential interpolation (except ServoWorks S-100T)
- Cylindrical interpolation (ServoWorks S-100T)
- Polar coordinate interpolation (ServoWorks S-100T only)
- Electronic gearing—one gearing ratio per axis
- Least input increment and accuracy: 1E–9 mm / 1E–10 in. (0.000000001 mm / 0.000000001 in.)
- Smoothing: acceleration and deceleration can be programmed for linear, bell-shaped and exponential filters
- Velocity feedforward to improve motion performance
- Backlash compensation
- Leadscrew pitch error compensation
- Linear scale feedback control
- 16-bit analog output per axis (VersioBus II interface system)
- Opto-isolated overtravel limit switch inputs and home switch inputs for each axis (VersioBus II interface system)
- Corner deceleration control for sharper corners while maintaining high feedrates away from corners
- 1000 cycle three-dimensional dynamic look-ahead contour control (3D-DLACC) with pre-interpolation acceleration for high-speed, high-precision machining (except ServoWorks S-100T) [VersioBus II interface system: one second look-ahead for 1 ms position feedback rate]

Integrated Soft PLC
- Ladder logic
- 0.07 μs/step (Pentium IV 2.4 GHz)
- Max 40,000 steps
- User-friendly ladder editor
- Real-time ladder monitor and time chart
- E-mail and telephone alert

Interface Features
- Simple and intuitive Windows-based HMI — easy to learn and easy to use
- Icon- and soft keys-based operation for manual data input: full-screen, single-window colorful graphical user interfaces with static display areas, permanently anchored toolbars and easy-to-use soft buttons, for giving commands and accessing information
- Auto Mode: real-time monitoring of G-code execution, with a part counter and a cycle timer
- 800 user configurable alarm messages programmable through PLC
- Password protection for parameter settings
- Easy connection of equipment to business-oriented applications running on the network
- Each ServoWorks CNC Windows HMI application can be fully customized by using the ServoWorks Development Kit (SDK)

Host PC Requirements
- CPU:
 - Minimum: Intel Pentium III 1 GHz or equivalent
 - Suggested and minimum for 3D-DLACC (three-dimensional dynamic look-ahead contour control): Intel Pentium IV 2 GHz or faster
- RAM: 256 MB (512 MB suggested)
- Hard disk space: 30 MB
- Operating system: Windows XP or Windows 7
- Ethernet connection: 10 MB/sec or 100 MB/sec
- PCI slot(s), depending on the servo platform and hardware options
- Display:
 - 256-color graphic adapter
 - Color monitor capable of 800 x 600 pixel resolution (1024 x 768 recommended)
 - Recommended video chips: ATI or nVidia
 - Video chips that are incompatible with Soft Servo Systems’ products: S3, SMI Lynx, Trident and VIA

NOTE: Depending upon your servo interface system, the location of the PCI slot of your PC adapter card(s), the location of the motherboard slot, and the hardware and software configuration, there is the potential that some PC functions might have to be disabled due to IRQ conflicts. These functions include, but are not limited to: USB, Ethernet, sound, modem, and some hardware components.
Soft Servo Systems recommends consulting with our sales staff prior to purchasing a PC for your Soft Servo Systems product.
Overview
These innovative PC-based industrial CNC controllers are for three–, four–, five– or seven–axis mills and machining centers; laser, plasma and waterjet cutting machines; EDM machines; grinding and shearing machines, etc. This series includes four products that encompass a wide range of multi-axis solutions:

<table>
<thead>
<tr>
<th>ServoWorks Product</th>
<th>Spindle Axis</th>
<th>Number of coordinated CNC axes</th>
<th>Number of PLC axes or synchronous control axes</th>
<th>TOTAL AXES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-100M</td>
<td>✓</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>S-120M</td>
<td>✓</td>
<td>4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>S-140M</td>
<td>✓</td>
<td>5</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

CNC Milling Functions
- 3 axes (S-100M), 4 axes (S-120M), or 5 axes (S-140M) simultaneous control, plus a C axis (spindle) for tapping and positioning capability
- Rigid tapping
- Split (dual) axis for gantry type control (except S-100M)
- Corner deceleration control for sharper corners while maintaining high feedrates away from corners
- 1000 cycle three-dimensional dynamic look-ahead contour control (3D-DLACC) with pre-interpolation acceleration for high-speed, high-precision milling [VersioBus II interface system: 1 second look-ahead for 1 ms position feedback rate]
- High-speed / high-precision machining: 60 m/min (2400 in/min)
- Complete drilling and boring canned cycles

PLC Features
- PLC axes for independent, individual positioning (except S-100M)
- Integrated soft motion and soft PLC (ideal for high-speed milling or high-speed cutting)
- Includes LadderWorks PLC (see page 13)
- 800 user configurable alarm messages programmable through PLC

Product Features
- Macro functions (see page 4)
- Complete dual-axis synchronous control (except S-100M)
- Provides powerful, automatic execution of motion (part) programs, processing up to 1000 blocks per second
- Linear scale feedback control
- 6 workpiece coordinate systems
- Maximum positioning speed: 300 M/min
- Operates with or without a touch panel
- Can be used with a manual pulse generator (handwheel)
- Includes the ServoWorks MotionLite application for servo setup, configuration and tuning (see page 13)
- Can operate on the EtherCAT, VersioBus™ II, Panasonic Realtime Express™, MECHATROLINK™ or CANopen communication platforms
- Available for GUI display in English, Japanese, Korean, Simplified Chinese or Traditional Chinese

Spindle Control Features
- Manual spindle control
- Spindle CW (M03) and spindle CCW (M04)
- Spindle stop (M05)
- Spindle speed override (50 – 120%)
- Actual spindle speed measurement and display
- Spindle orientation
- C axis control

Tool Compensation Features
- Tool offset compensation: geometry and wear offsets
- 256 pairs of tool offsets
- Automatic tool length compensation calibration

Manual NC modes:
1. Jog Continuous Mode
2. Jog Incremental Mode
3. Rapid Mode
4. MDI Mode (manual data input)
5. Home Mode
6. HandWheel Mode (manual jog with a pulse generator)
7. Spindle Mode
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G00</td>
<td>Rapid positioning</td>
</tr>
<tr>
<td>G01</td>
<td>Linear interpolation</td>
</tr>
<tr>
<td>G02</td>
<td>Clockwise circular or helical interpolation</td>
</tr>
<tr>
<td>G03</td>
<td>Counterclockwise circular or helical interpolation</td>
</tr>
<tr>
<td>G02.3</td>
<td>Positive exponential interpolation</td>
</tr>
<tr>
<td>G03.3</td>
<td>Negative exponential interpolation</td>
</tr>
<tr>
<td>G04</td>
<td>Dwell</td>
</tr>
<tr>
<td>G05</td>
<td>Dynamic look-ahead contour control on / off</td>
</tr>
<tr>
<td>G10</td>
<td>Program data input</td>
</tr>
<tr>
<td>G17</td>
<td>XY plane selection</td>
</tr>
<tr>
<td>G18</td>
<td>ZX plane selection</td>
</tr>
<tr>
<td>G19</td>
<td>YZ plane selection</td>
</tr>
<tr>
<td>G20</td>
<td>Inch data input</td>
</tr>
<tr>
<td>G21</td>
<td>Metric data input</td>
</tr>
<tr>
<td>G28</td>
<td>Automatic return to the reference point</td>
</tr>
<tr>
<td>G29</td>
<td>Automatic return from the reference point</td>
</tr>
<tr>
<td>G30</td>
<td>Automatic return to the 2(^{nd}), 3(^{rd}) and 4(^{th}) reference points</td>
</tr>
<tr>
<td>G31</td>
<td>Skip cutting</td>
</tr>
<tr>
<td>G37</td>
<td>Automatic tool length compensation calibration</td>
</tr>
<tr>
<td>G40</td>
<td>Tool radius compensation (TRC) cancel</td>
</tr>
<tr>
<td>G40.1</td>
<td>Normal direction control cancel</td>
</tr>
<tr>
<td>G41</td>
<td>Tool radius compensation (TRC) left</td>
</tr>
<tr>
<td>G41.1</td>
<td>Normal direction control left</td>
</tr>
<tr>
<td>G42</td>
<td>Tool radius compensation (TRC) right</td>
</tr>
<tr>
<td>G42.1</td>
<td>Normal direction control right</td>
</tr>
<tr>
<td>G43</td>
<td>Positive tool length compensation</td>
</tr>
<tr>
<td>G43.2</td>
<td>Tool center point (TCP) control</td>
</tr>
<tr>
<td>G44</td>
<td>Negative tool length compensation</td>
</tr>
<tr>
<td>G49</td>
<td>Tool length compensation cancel/TCP cancel</td>
</tr>
<tr>
<td>G50</td>
<td>Scaling off</td>
</tr>
<tr>
<td>G50.1</td>
<td>Mirror image off</td>
</tr>
<tr>
<td>G51</td>
<td>Scaling on</td>
</tr>
<tr>
<td>G51.1</td>
<td>Mirror image on</td>
</tr>
<tr>
<td>G52</td>
<td>Local coordinate system selection</td>
</tr>
<tr>
<td>G53</td>
<td>Machine coordinate system selection</td>
</tr>
<tr>
<td>G54-59</td>
<td>Workpiece coordinate system 1–6 selection</td>
</tr>
<tr>
<td>G54.1</td>
<td>Additional workpiece coordinate system selection</td>
</tr>
<tr>
<td>G61</td>
<td>Exact stop check mode</td>
</tr>
<tr>
<td>G64</td>
<td>Continuous cutting mode</td>
</tr>
<tr>
<td>G64.1</td>
<td>Continuous cutting mode with block rollover</td>
</tr>
<tr>
<td>G65</td>
<td>Simple macro call</td>
</tr>
<tr>
<td>G66</td>
<td>Coordinate system rotation</td>
</tr>
<tr>
<td>G69</td>
<td>Coordinate system rotation cancel</td>
</tr>
<tr>
<td>G73</td>
<td>High speed peck drilling cycle</td>
</tr>
<tr>
<td>G74</td>
<td>Counter tapping cycle</td>
</tr>
<tr>
<td>G76</td>
<td>Fine boring cycle</td>
</tr>
<tr>
<td>G80</td>
<td>Canned cycle cancel</td>
</tr>
<tr>
<td>G81</td>
<td>Drilling cycle, spot boring</td>
</tr>
<tr>
<td>G82</td>
<td>Drilling cycle (dwell)</td>
</tr>
<tr>
<td>G83</td>
<td>Peck drilling cycle</td>
</tr>
<tr>
<td>G84</td>
<td>Tapping cycle</td>
</tr>
<tr>
<td>G85</td>
<td>Boring cycle</td>
</tr>
<tr>
<td>G86</td>
<td>Boring cycle (spindle stop)</td>
</tr>
<tr>
<td>G87</td>
<td>Back boring cycle</td>
</tr>
<tr>
<td>G89</td>
<td>Boring cycle (dwell)</td>
</tr>
<tr>
<td>G90</td>
<td>Absolute command programming</td>
</tr>
<tr>
<td>G91</td>
<td>Incremental command programming</td>
</tr>
<tr>
<td>G92</td>
<td>Workpiece coordinate programming</td>
</tr>
<tr>
<td>G94</td>
<td>Feed per minute mode</td>
</tr>
<tr>
<td>G95</td>
<td>Feed per revolution mode</td>
</tr>
<tr>
<td>G98</td>
<td>Return to initial point in canned cycle</td>
</tr>
<tr>
<td>G99</td>
<td>Return to R point in canned cycle</td>
</tr>
<tr>
<td>G310</td>
<td>Linear interpolation feedrate include rotary axes</td>
</tr>
<tr>
<td>G311</td>
<td>Linear interpolation feedrate exclude rotary axes</td>
</tr>
</tbody>
</table>
Overview

ServoWorks™ S-140M™ are ideal for many shape cutting applications: laser cutting, plasma cutting, diamond glass cutting, oxy-fuel cutting and waterjet cutting machines.

Tool Center Point (TCP) Control

- Compensates for the distance between the actual tool position (i.e. the tip of the nozzle) and the tool center point (the theoretical tool position) — the program position is actually shifted to account for the tool center point, as opposed to compensating each actual movement command in the part program.
- The actual trajectory of G code is applied to the tool center point, and the tool center point acts independently from axis movement or angle movement. The tool center point moves at the feedrate specified by the part program, along the path specified by the part program.
- Simplifies the programming of complex workpieces.

Corner Deceleration and Velocity Control

- Creates sharper corners while maintaining high feedrates away from corners
- For each “corner” (specified by a user-defined angle), the cutting feedrate near the corner is automatically decelerated to a user-specified corner feedrate to increase the working accuracy to that of low feedrate processing. The user can specify whether or not to perform an in-position check at each corner, to further increase accuracy.

Block Search

During part program execution, you can use the “block search” function to search for a specific block based on a sequence number (N), a tool number (T) or an M code (M), and then restart execution from that block.

This block search is not a simple text search; rather it is a more useful “search with calculation” that extracts data from each previous block before checking to see if the current block is the target block. While searching the part program line by line for the target block containing the specified N, T or M number, ServoWorks S-140M also runs the part program line by line, and tracks the location of each axis. In this way, for each line of code in the part program, the current modal information for each G code group, the current T code, feedrate, macro parameters, etc. are maintained.

This is comparable to running ServoWorks S-140M in Simulation Mode, except that no tool movement is simulated on the screen. No tool movement occurs while this “search with calculation” continues.

Upon reaching the target block, ServoWorks S-140M moves each axis to a reentry position — its programmed position just prior to this block (the programmed position has been continuously updated during the block search), and then continues execution of the part program beginning with the target block.

This complicated algorithm allows you to start execution at the target block, with all the “knowledge” (data) of what transpired in all of the previous blocks.

Quadrant Protrusion Compensation

- Optimizes cutting precision by preventing protrusions and unevenness due to lost motion when an axis reverses motion
- Applies to circular compensation and “V” shape cutting

Straightness Compensation

- Compensates for a lack of straightness along the total length of an axis
- Compensates for the lack of squareness between axes
Normal Direction Control and Bevel Cutting

- A tool with a rotation axis can be controlled so that it is kept constantly perpendicular to the tool path, as the tool moves in the X-Y plane.
- ServoWorks S-140M calculates the required geometry modifications to apply to tool movement, to keep the tool normal to its path at all times.
- Ideal for clean and functional bevel cutting and chamfering, particularly rotary bevel cutting.
- Greatly simplifies the programming of the beveled shapes and chamfers that are common in plasma cutting and fuel cutting applications.

Velocity Control in Circular Interpolation

Automatically adjusts (reduces) circular interpolation speed according to the circle radius and the maximum allowable machine acceleration/ deceleration, to meet the specified trajectory accuracy.

Macro Variable Display

- View up to 20 macro variable values at one time (global, permanent or system variables)
- Useful for tracking tool length or radius compensation values (either wear or geometry)

Retrace Function

There are many reasons that the CNC may continue to move even if cutting is no longer taken place: a piece may be left uncut due to an unstable plasma emission process or an uncertain workpiece thickness, or the garnet running out on the waterjet or your gas going off. With a complicated shape, it’s difficult to manually reverse and move backwards along the cutting path to fix this problem. With the retrace function, though, you can stop the cycle, move the tool in the reverse direction with the “RETRACE” button, retrace the programmed path up to the last 200 blocks, and then move the tool forward again along the retraced path.

1. CNC cutting begins. The dashed path indicates that the CNC still moves, but no cutting occurs; the operator notices, and presses the “RETRACE” button.
2. The CNC reverses direction and follows the reverse path until the operator presses the “RETRACE” button again.
3. CNC cutting continues along the original path and executes the remainder of the part program.
Overview
ServoWorks™ S-100T™ is a unique PC-based CNC controller for lathes, providing 2-axis motion control with a spindle, or 3-axis motion control including a C-axis.

This industrial CNC solution supports all standard lathe operational functions and features, including indexing, plus live tools and all-axes simultaneous interpolation with a spindle (C axis). High performance CNC functionality and productivity allow customers to produce complex and precise parts quickly and easily.

Standard CNC Lathe Functions
- Drilling
- Profiling
- Grooving
- Cutting
- Chamfering
- Indexing
- Boring
- Multi-pass threading

C-Axis Control and Live Tool Features
- Full interpolation of X, Z and C axes
- Cylindrical interpolation
- Polar coordinate interpolation
- Face drilling
- Face tapping
- Face boring
- Side drilling
- Side tapping
- Side boring
- End face cutting cycle

Spindle Control Features
- Manual spindle control
- Spindle speed override (50 – 120%)
- Constant surface speed control (CSS)
- Actual spindle speed measurement and display
- Spindle gear change — supports up to 4 gear stages
- Spindle speed check

Tool Compensation Features
- Tool offset compensation: geometry and wear offsets
- 99 pairs of tool offsets
- Easy tool offset measurement: no calculations needed
- Tool nose radius compensations

Manual NC modes:
(1) Jog Continuous Mode
(2) Jog Incremental Mode
(3) Rapid Mode
(4) MDI Mode (manual data input)
(5) Home Mode
(6) HandWheel Mode (manual jog with a pulse generator)
(7) Spindle Mode

Tool Compensation Features
- Tool offset compensation: geometry and wear offsets
- 99 pairs of tool offsets
- Easy tool offset measurement: no calculations needed
- Tool nose radius compensations

Product Features
- Macro functions (see page 4)
- Provides powerful, automatic execution of motion (part) programs, processing up to 1000 blocks per second
- Workpiece coordinates (one external zero offset and 6 workpiece coordinate systems)
- Maximum positioning speed: 300 M/min
- Maximum cutting function: 60 M/min
- Operates with or without a touch panel
- Can be used with a manual pulse generator (handwheel)
- Can operate on the EtherCAT, VersioBus™ II, Panasonic Realtime Express™, MECHATROLINK™ or CANopen communication platforms
- Available for GUI display in English or Simplified Chinese

Additional Interface Features
- On-line, interactive part program editing
- Graphical G-code input and editing facilitates part program creation

PLC Features
- Integrated soft motion and soft PLC
- Includes LadderWorks PLC (see page 13) [NOTE: LadderWorks Console, a Win32 application for ladder sequence program editing, is not included with ServoWorks S-100T at this time.]
Supported M Codes

- **M00** Program stop
- **M01** Optional stop
- **M02** Program end
- **M03** Spindle CW
- **M04** Spindle CCW
- **M05** Spindle stop
- **M08** Coolant on
- **M09** Coolant off
- **M10** Chuck unclamp, collet open
- **M11** Chuck clamp, collet close
- **M19** Indexing (spindle orientation)
- **M20** Indexing (spindle rotation mode)
- **M30** Program end and rewind
- **M50** Live tool #1 on
- **M51** Live tool #1 off
- **M52** Live tool #2 on
- **M53** Live tool #2 off
- **M54** Live tool #3 on
- **M55** Live tool #4 off
- **M98** Subprogram call from a main program
- **M98** Return to main program from a subprogram, or return to beginning of main program (if used in the main program)

Plus up to 82 customizable M codes through PLC

Supported G Codes

- **G00** Rapid positioning
- **G01** Linear interpolation
- **G02** Clockwise circular interpolation
- **G03** Counterclockwise circular interpolation
- **G04** Dwell
- **G09** Exact stop check
- **G10** Program data input
- **G20** Inch data input
- **G21** Metric data input
- **G22** Barrier check on
- **G23** Barrier check off
- **G25** Spindle speed fluctuation detection off
- **G26** Spindle speed fluctuation detection on
- **G28** Automatic return to the reference point
- **G29** Automatic return from the reference point
- **G30** Automatic zero return to 2nd, 3rd, 4th reference points
- **G32** Thread cutting with a constant lead
- **G40** Tool nose radius compensation cancel
- **G41** Tool nose radius compensation left
- **G42** Tool nose radius compensation right
- **G50** Coordinate system preset and maximum spindle RPM
- **G52** Local coordinate preset
- **G53** Machine coordinate system selection
- **G54-G59** Workpiece coordinate system 1–6 selection
- **G61** Exact stop check mode
- **G64** Continuous cutting mode
- **G65** Simple macro call
- **G70** Finishing cycle
- **G71** Stock removal in turning
- **G72** Stock removal in facing
- **G73** Pattern repeat cycle
- **G74** End face peck drilling/grooving
- **G75** Outer diameter/inner diameter grooving
- **G76** Multiple-pass threading cycle
- **G80** Hole machining canned cycle cancel
- **G83** Face drilling cycle
- **G84** Face tapping cycle
- **G85** Face boring cycle
- **G87** Side drilling cycle
- **G88** Side tapping cycle
- **G89** Side boring cycle
- **G90** Outer diameter/inner diameter cutting cycle
- **G92** Thread cutting cycle
- **G94** End face cutting cycle
- **G96** Constant surface speed control set
- **G97** Constant surface speed control cancel
- **G98** Per minute feed
- **G99** Per revolution feed
- **G107** Cylindrical interpolation
- **G112** Polar coordinate interpolation mode set
- **G113** Polar coordinate interpolation mode cancel
- **G164** Continuous cutting mode with block rollover
Overview
ServoWorks™ MotionLite™, included with ServoWorks S-100M™, S-120M™, and S-140M™, is a free utility application for setup, configuration, servo tuning and testing of ServoWorks S-100M, S-120M, S-140M and S-160M systems. It can also be used for simple motion control to verify the system. MotionLite controls up to 16 axes, 4 axes at a time, with real-time monitoring of motion and I/O status.

Interface Features
- Incorporates simple and intuitive menu- and tab-driven HMI that is easy to learn and easy to use
- Manual NC modes:
 1. Jog Mode
 2. Position Mode (4-axis coordinated linear interpolation)
 3. HandWheel Mode (manual jog with a pulse generator)
 4. Block Buffer Mode (consecutive execution of blocks of code in a block buffer, for continuous motion)
- Test Mode: tuning of the ServoWorks system including velocity frequency/step response and position frequency/step response, in either sinusoidal or square wave

Comprehensive Setup, Configuration, Servo Tuning and Testing Features
- Includes ServoWorks CNC system setup and configuration functions, such as driver installation, FPGA initialization, setting of servo control and servo drive parameters, etc.
- Includes test operation modes for ServoWorks CNC system tuning such as velocity frequency/step response and position frequency/step response in either sinusoidal or square wave
- Interactive manual PID tuning
- Enhanced data sample and plot utilities (including continuous plot), for a lively visualization of system performance

LadderWorks™ PLC: A Complete Soft PLC Package

Overview
LadderWorks™ PLC is an independent PLC package included with all ServoWorks CNC products.

LadderWorks Console
- Win32 application for creating, importing, editing, monitoring, debugging and compiling PLC sequence programs
- Quickly insert functional commands by selecting functions from a pull-down menu, and entering parameters (if any) in pop-up text boxes; insert basic instructions by pointing and clicking on symbols within the easy-to-use GUI
- View Ladder Diagram (LD) or Instruction List (IL) format
- Search and print ladder diagrams
- Force component values while monitoring sequence programs

LadderWorks PLC Utilities for Debugging
- PLC Bit Pattern Utility — provides the current bit pattern for any signal address (F, G, X or Y data)
- PLC Time Chart Utility — shows the history of any specified bits in any signal addresses

LadderWorks PLC Engine
- Real-time soft PLC engine for industry-standard ladder logic control and execution of PLC sequence programs
- Provides control of axis modules — independent and individual positioning of PLC axes — useful for part feeders, tool changers, etc. (ServoWorks S-120M and ServoWorks S-140M)
- Seamlessly integrated with the ServoWorks CNC Engine into a single motion/machine control application providing uniform API functions
- Operates with Fanuc-compatible ladder logic
- Includes up to 416 opto-isolated I/O points for the VersioBus II interface system
- Provides deterministic, real-time performance
- Operates with a 5 msec standard scan time (8 msec for ServoWorks S-100T)
- Recognizes 38 function blocks and 12 basic commands, simplifying the programming of complex machine functions and allowing for quick and easy creation of sequence programs
- 100 bytes each for X and Y addresses
- 400 bytes each for F and G addresses
Soft Servo Offers a Wide Variety of Servo Communications Platforms

The Panasonic Realtime Express™ (RTEX)
Ethernet-Based Interface System
- High-speed (100 Mbps), Ethernet-based digital synchronous servo communications technology developed by Matsushita Electric Industrial Co., Ltd.
- Low cost, high performance control of 16 axes with 0.5 ms – 1 ms cycle time
- High resolution and precise synchronization allowing interpolation
- All-digital, minimal-hardware control architecture
- Works with a single, low-cost commercial Ethernet LAN cable and Panasonic MINAS A4N servo drive systems

The VersioBus II Interface System
- Unique and proprietary 5 Mbps real-time fiber-optic digital servo communications protocol for interfacing with any conventional analog-interfaced servo drive using a single fiber-optic cable
- Runs on dual-channel VersioBus II servo and I/O communications
- Up to 16 axes of servo control, scalable in 4-axis increments
- Coordinated motion at a 1 ms position feedback rate
- Scalable general opto-isolated digital I/O up to 416 points
- Compatible with AC and DC motors and with incremental encoders — the ideal choice for servo communications for retrofitting existing machines or machine tools
- 16-bit analog output, opto-isolated forward and reverse overtravel limits, and home switch inputs for each axis
- Encoder and digital I/O connector for a handwheel on the VersioBus II adapter board, plus a 32-point on-board general I/O connector
- No noise to interfere with system communications

The CANopen Interface System
- A fast, vendor-independent, Ethernet-based realtime open network for servo and I/O communications that works with CANopen over EtherCAT (CoE) servo drives and I/O devices
- Economically efficient
- Simple setup and wiring
- Proven technology in use for over two decades
- Drive parameters can be changed on-the-fly
- Tightly synchronized drives close all servo loops (each servo amplifier closes the servo actuator’s feedback loop locally)
The MECHATROLINK II Interface System
- Yaskawa's MECHATROLINK™ II (10 Mbps) for high-end digital servo and I/O network — reliable, versatile and economically efficient
- Market-leading, high-performance servo system
- All-digital, minimal-hardware control architecture
- Works with the Yaskawa family of digital servo systems (Sigma II, Sigma III or Sigma V series servo drives), inverters and I/O modules, as well as any MECHATROLINK-compatible devices from other companies
- Up to 30 stations can be integrated in one network, using a single, shielded twisted pair interface cable
- Low cost, high noise immunity transmission
- Data transfer rate: 10 Mbps
- 4 ms to 30 ms cycle times for up to 30 stations

The EtherCAT Interface System
- A fast, vendor-independent, Ethernet-based realtime open network for servo and I/O communications that works with CANopen over EtherCAT (CoE) servo drives and I/O devices
- Extremely fast — control of up to 32 servo axes with a cycle time as fast as 0.5 ms
- Simple wiring — single-line daisy chain without even a terminator
- Normal, off-the-shelf Ethernet cabling
- Easy to configure, diagnose and maintain
- Less expensive, due to simplified configuration, no plug in cards, no switches/hubs, and standard cabling
- Well proven technology
- Offers redundancy against cable or node failures (with second Ethernet port)
- Servo drives from different manufacturers can be connected in the same network

The MECHATROLINK III Interface System
- Yaskawa’s MECHATROLINK™ III Ethernet-based digital servo communications technology
- Integrates up to 62 stations in one network, using a single Ethernet interface cable
- Data transfer rate: 100 Mbps (ten times faster than MECHATROLINK II)
- Works with the Yaskawa’s highly-acclaimed Sigma V series servo drives
- All-digital, minimal-hardware control architecture
- Supports hot plugging servo drives
Overview

The following ServoWorks™ CNC products are available for Windows:

- ServoWorks S-100M™
- ServoWorks S-120M™
- ServoWorks S-140M™
- ServoWorks S-100T™

All ServoWorks CNC products include the following components:

- Windows HMI for each specific ServoWorks CNC product
- LadderWorks PLC, including the real-time LadderWorks PLC Engine and the LadderWorks Console for editing and monitoring PLC sequence programs
 [NOTE: The LadderWorks Console is not included for ServoWorks S-100T.]
- ServoWorks MotionLite, a Windows application for setup and tuning of ServoWorks S-100M, S-120M, and S-140M (not included with ServoWorks S-100T)
- Real-time ServoWorks CNC Engine specific to the product
- Real-time ServoWorks G-Code Parser specific to the product
- Real-time kernel for Windows
- Servo interface system: VersioBus II, EtherCAT, Panasonic Realtime Express (RTEX), MECHATROLINK II, or MECHATROLINK III

When ordering, the servo platform must be specified and the corresponding servo interface system will be provided as follows:

VersioBus II Interface System:

- FP-105 (PCI) VersioBus II adapter board
- One, two or four DC-155 remote interface module(s)*
- 4.5 m VersioBus II fiber-optic cable(s)*
- VersioBus II real-time device driver

EtherCAT Interface System:

- EtherCAT real-time device driver

 [NOTE: Does not include EtherCAT cables (Ethernet cables).]

Panasonic Realtime Express (RTEX) Interface System:

- One FPA-200/300 RTEX adapter board (PCI)
- RTEX real-time device driver

 [NOTE: Does not include RTEX cables (Ethernet cables).]

MECHATROLINK II Interface System:

- One NT110 (PCI) MECHATROLINK II adapter board
- MECHATROLINK II real-time device driver

 [NOTE: Does not include MECHATROLINK II cables or terminators.]

MECHATROLINK III Interface System:

- One NT112 (PCI) MECHATROLINK III adapter board
- MECHATROLINK III real-time device driver

 [NOTE: Does not include MECHATROLINK III cables or terminators.]

* ServoWorks S-100T, and S-100M for the VersioBus II servo interface come with one set of a DC-155 and a VersioBus II fiber-optic cable. ServoWorks S-120M and S-140M come with two sets of DC-155s and cables.
ServoWorks Development Kit (SDK)

There are two packages for the ServoWorks Development Kit: a Standard Package and a Premium Package.

SDK Standard Package includes:
- SWAPI (ServoWorks APIs) for the following programming languages:
 - Visual Basic 6.0
 - C/C++
 - .NET 2.0
- Intensive sample source code
- Simulation Engines specific to the product (simulation versions of the ServoWorks CNC Engine, ServoWorks G-Code Parser and LadderWorks PLC Engine)

NOTE: The SDK Standard Package does not include technical support or maintenance, and does not include a real-time kernel for Windows. A real-time kernel for Windows (included with all regular ServoWorks CNC products) would be required to run the Simulation Engines.

SDK Premium Package includes:
- All the items in the SDK Standard Package (above)
- ServoWorks Simulator Package for a ServoWorks CNC product of the user's choice
- Annual software maintenance for the first year
- One-seat technical support (e-mail and phone) for the first year
- One-seat training for SDK programming (two days)

An SDK is available and different for each ServoWorks CNC product. A ServoWorks application to be developed by an SDK for a product would run on the ServoWorks CNC Engine of that product.

ServoWorks Simulator Packages

A simulator package is available and different for each ServoWorks CNC product. Each simulator package comes with a Windows HMI, a ServoWorks CNC Engine Simulator, a ServoWorks G-Code Parser Simulator, the LadderWorks PLC Engine and a real-time kernel for Windows.

ServoWorks Starter Package

ServoWorks Starter Package includes:
- Two-day technical training at a Soft Servo Systems facility for up to two people
- Annual software maintenance for the first year
- Technical support (e-mail and phone) for the first year

Application Source Code

Visual Basic source code for ServoWorks MC-Quad, S-100M, S-120M, S-140M, S-100T or MotionLite

Single Source CNC Packages with Panasonic MINAS A4N Drives or Yaskawa Drives

Total CNC packages with Panasonic MINAS A4/A5-series servo drives and motors, or with Yaskawa Sigma II, Sigma III or Sigma V servo drives (with a choice of MECHATROLINK II, MECHATROLINK III or VersioBus II servo communications), are available.

Soft Servo Systems has a sales and technical partnership with Matsushita Electric Industrial Co., Ltd., allowing us to offer Panasonic MINAS A4-series servo drives and motors to our customers.

Soft Servo Systems also has a long standing business and technical partnership with Yaskawa Electric Company. This allowed us to be the first company in the United States to offer Sigma III servo drives with MECHATROLINK II servo communications, and one of the first third-party motion control providers of a system combining MECHATROLINK III and Sigma V technologies. These complete and economical CNC solutions for MECHATROLINK interface systems include world wide support.

We constantly work with Matsushita Electric Industrial Co. and Yaskawa Electric Company on providing the best motion control solutions for our customers.

Software Options

- Macros for all products (including local, global, symbolic, permanent and system variables; extensive math operations; unlimited nesting of branching and repetition statements; and macro calls using custom G, M, S and T codes)
- Tool center point (TCP) control — compensates for the distance between the actual tool position and the theoretical tool position — the program position is actually shifted to account for the tool center point, as opposed to compensating each actual movement command in the part program [only for ServoWorks S-140M]
- 3D-DLACC, three-dimensional dynamic look-ahead contour control — a highly advanced, highly specialized look-ahead function with pre-interpolation acceleration for high-speed, high-precision machining
- Complete synchronized control for gantry (dual) axes [for ServoWorks S-120M/S-140M]
- C axis for the spindle for ServoWorks S-100T
- Cylindrical interpolation for ServoWorks S-120M/S-140M (available soon)
- Rigid tapping for ServoWorks S-100M/S-120M/S-140M [limited to the servo spindle]
Overview
Soft Servo Systems provides dynamic CNC solutions designed to meet specific industry needs. All of our products have been tested extensively by end users to ensure that we achieve the highest levels of quality and innovation. Despite all the preparation that goes into our development process, we know there will always be some customers who require something different in their CNC applications. With this in mind, we have made it easy for users to create or customize their own ServoWorks applications in C/C++, Visual Basic 6.0 or .NET 2.0 for Windows XP/7.

Customers can program their own GUI or text-based ServoWorks application interface in one of two ways:

1. By using SWAPI, ServoWorks’ extensive Motion Control APIs in the Win32 environment, provided in the form of Visual Basic 6.0, C/C++ or .NET 2.0. APIs are provided for complete and full access to all real-time processes and resources.

2. By modifying the source code of any ServoWorks GUI application. We offer source code in Visual Basic, C/C++ and .NET 2.0 for customers to use as a basis for customizing their ServoWorks application. This may be the most efficient way to customize an application to meet exact specific needs.

Users can create a hybrid application of C/C++ and Visual Basic to take advantage of the faster execution time of C/C++ while using Visual Basic to quickly and easily create advanced, professional-looking GUls.

Soft Servo Systems offers software development tools to facilitate development of customized applications capitalizing on ServoWorks technology: the ServoWorks Simulator and the ServoWorks Development Kit (SDK). We also offer software development services.

ServoWorks Development Kit (SDK)
- The ServoWorks Development Kit is a package for software developers who want to create their own, customized motion control applications based on ServoWorks technology and on SWAPI (ServoWorks motion control APIs in the Win32 environment), which forms the core of SWSDK.
- SDK jump-starts users in developing their own customized ServoWorks applications, while taking full advantage of ServoWorks technology quickly and easily.
- SDK comes in two packages: Standard and Premium.

SDK Standard Package includes:
- The following forms of SWAPI:
 - SWAPI Visual Basic 6.0 Module Package—Reusable code modules to include in Visual Basic project to make the ServoWorks API functions part of the application
 - SWAPI C/C++ Interface Package, including header files and a library file to include in C or C++ projects
 - SWAPI .NET 2.0 Interface Package
- Intensive sample source code for simple C/C++ and Visual Basic applications — models how to use SWAPI functions
- Simulation Engines specific to the product (simulation versions of the ServoWorks CNC Engine, ServoWorks G-Code Parser and LadderWorks PLC Engine)
- An extensive API reference manual — a complete, organized resource clearly explaining the ServoWorks APIs, making them easy to use in building an application
- An intensive and user-friendly programming manual including an explanation of ServoWorks technology, code examples, and more

NOTE: The SDK Standard Package does not include technical support or maintenance, and does not include a real-time kernel for Windows. A real-time kernel for Windows (included with all regular ServoWorks CNC products) would be required to run the Simulation Engines.

SDK Premium Package includes:
- All items in the SDK Standard Package (above)
- A ServoWorks Simulator Package for one of Soft Servo Systems’ CNC products
- Annual maintenance for the first year
- One-seat technical support (email and phone) for the first year
- One-seat training for SDK programming (two days)
Soft Servo Systems, Inc. Corporate Profile

Soft Servo Systems, the leading provider of PC-based motion control products, was founded in February 1998 by MIT professionals with funding from private investors.

Soft Servo Systems was among the first to develop a truly PC-based servo controller in which a single, powerful host computer, combined with FPGA technology, performs all real-time servo control operations. Our products integrate and leverage this servo control with the most advanced information and communication technologies. In addition to handling feedback loops, multi-axis coordination and NC path generation, the computer also provides the graphical user interface, data processing, plant monitoring, network communication, file management, and more.

Soft Servo’s soft CNC products are based on our unique and proprietary ServoWorks technology that fully exploits the ever-improving CPUs in personal computers to give customers superior CNC performance. Soft CNC technology eliminates the need for a motion control coprocessor card. The multi-axis servo loops are entirely closed in the CPU and provide extremely fast and accurate motion control. The end result is a highly flexible, low cost control system, with exceptional features that traditional PC-based controllers (still requiring motion control boards) cannot provide.

Soft Servo’s soft CNC technology enables customers to build their own products without depending on the proprietary information and black box technology provided by NC vendors. We believe that machine tool builders know the real needs in their fields much better than NC vendors. Our soft motion technology allows users to implement their unique product concepts and use their valuable know-how to build the best possible CNC products. Let Soft Servo’s PC-based motion control help you to achieve the ultimate flexibility and intelligence in building your CNC system.

Soft Servo Systems’ Mission:

- To provide high-performing yet affordable and reliable CNC solutions to industrial machine builders and other users by exploiting the high-speed, ever-improving CPUs of personal computers.

- To revolutionize motion control for the manufacturing industry by leveraging and integrating the latest developments in information and software technologies.
Consult the ServoWorks CNC Product Parts List or your Soft Servo Systems sales representative regarding standard and optional features for these products.